
Journal of  Statistical Physics, Vol. 52, Nos. 1/2, 1988 

Rupture of Heterogeneous Media in the 
Limit of Infinite Disorder 

St~phane Roux,1 Alex Hansen, 2 Hans Herrmann, 1,3 and Etienne Guyon ~ 

Received November 3, 1987; revision received January 8, 1988 

We consider a random fuse or random fragile element model. We show that, in 
the limit of infinite disorder in the bond-breaking thresholds, the rupture of a 
lattice is a "disguised" percolation process. Therefore, just before the final 
overall rupture of the lattice, we obtain scaling relations of various physical 
properties as a function of the number of bonds broken. 
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The rupture properties of disordered systems are of considerable interest 
both from the technological and from the scientific point of view. In 
parallel to the mechanical problem of rupture (see, e.g., ref. 1), recent 
advances have been made in the scalar case of electrical conduction, i.e,, 
the breakdown of fuse networks. (2 s) 

Three main approaches can be considered (see, e.g., ref. 6): 

1. The random threshold problem, (2) where a lattice consists of fuses 
having the same conductance, but randomly distributed breaking 
threshold voltages vb. 

2. The random conductance case, where the conductances have 
random values, but the breaking thresholds are identical. (5) 

3. The random fuse problem, where the disorder is induced only by a 
random initial depletion of the lattice as in a percolation 
process. (7) 
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In this paper, we focus exclusively on the first case, which is still also 
under numerical study both in the original electrical case (2) and in a 
mechanical version. ~8) In the following, we refer to current and voltage, 
although one can transpose the results directly into a mechanical 
framework by using force and displacement instead. 

Let us first recall the procedure used in the random threshold model: 
One starts with a full lattice and applies a voltage drop V across it. As the 
voltage is increased, one bond will reach its limit voltage and then burn 
out, thus changing its conductance to zero. The same procedure is repeated 
again with the resulting lattice, until finally the lattice is broken apart and 
thus becomes insulating. Of course, in practice one solves the distribution 
of potentials in the lattice for a unit voltage drop V= 1 and looks for the 
maximum value of the ratio 

A~= Iv~l/v~i (1) 

over all bonds; v i is the voltage drop in the ith bond for V= 1, and Vbi is 
the ith breaking voltage. If the maximum A is reached on bond j, then this 
bond is broken when the external voltage is V= 1/Aj. 

Two elements are important in determining the rupture sequence and 
can be used to define two limiting cases: 

(a) The ratio A is controlled by the [vi[; this corresponds to the 
small-disorder limit in the distribution of thresholds, or to a large 
distribution of intensities in the lattice. 

(b) The ratio A is controlled by the vbi; this corresponds to the 
large-disorder limit in the breaking voltage compared with the distribution 
of currents in the lattice. We will concentrate upon this latter case in the 
rest of this paper. It is typical for the beginning of a rupture process (local 
microcracks), whereas the small-disorder limit is rather reached at the end 
of the rupture sequence (development of a single macrocrack). In most 
situations, one crosses over from the large-disorder regime to the 
small-disorder limit abruptly as rupture develops. (6) 

In case (b), we can neglect the width of the voltage distribution. 
However, we should distinguish clearly between two classes of bonds: those 
that carry a current (they constitute the "backbone," by definition), and 
those that do not belong to the backbone (they are part of either dangling 
ends or isolated clusters). Our hypothesis of infinite disorder results in 
deciding at random which bond will break, and this with equal probability 
for each bond in the backbone. Obviously, all bonds that do not belong to 
the backbone carry no current and thus cannot be burned out. It thus 
turns out that the rupture is determined in this case by the geometry alone 
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(the backbone can also be defined in a purely geometrical way, as the 
intersection of all self-avoiding walks from one electrode to the other) 
rather than by transport properties (i.e., solving the complete current 
distribution). 

This problem is now very close to a percolation problem. In the latter 
case, one would cut bonds at random in the lattice. Let us call p the 
proportion of bonds present at a given stage of the depletion. With our rule 
of breaking, contrary to the percolation process, we have to check at each 
step whether the bond we have picked at random does or does not belong 
to the backbone. If it does not belong to the backbone, then we select 
another one, until finally we pick one bond on the backbone and thus cut 
it. Let us assume that we use the same random choice of bonds to be 
removed in parallel in both problems. Then, for a given p in the per- 
colation problem, we can associate the proportion of bonds r(p) that have 
not been burnt out in the fuse problem. Some properties of the lattice will 
not be affected by the difference in the  two processes; for instance, their 
backbones will be identical. Asymptotically, when the lattice size tends to 
infinity, there is a unique and well-defined correspondence between r and p 
(see Fig. 1). This correspondence yields information (and scaling relations) 
about the rupture problem from percolation. 

The reason for introducing both parameters r and p is that p is the 
natural percolation parameter, but unfortunately, it is not defined 
experimentally. On the contrary, r is observable: it is the proportion of 
bonds effectively broken, and therefore is related to the "damage 
parameter" often used in the literature. The function r(p) allows a direct 
translation of a physical feature into a practical parameter used in the 
percolation model. 

The relation between r and p is a purely geometrical problem, which 
can be solved numerically by using an algorithm to identify the backbone. 
This problem is known to be difficult. ~ However, we can simplify it con- 
siderably in the two-dimensional case by considering the dual lattice: To 
each cell is associated a site in the dual lattice whose bonds are such that 
they cross one and only one bond in the original lattice (see Fig. 2). The 
bonds that were conducting are associated with resistors, and the insulating 
bonds (the fuses that have burned out) become superconductors in the 
dual lattice. Therefore, the "dual-fuse" is a resistive element that becomes 
short-circuited whenever the current flowing through it is larger than the 
threshold vb (equal to the voltage threshold for the original fuse). The 
boundary conditions also have to be changed accordingly: An insulating 
side becomes an equipotential and an equipotential is turned into an 
insulating border. Both problems are equivalent. However, numerically, the 
second one is easier to handle. The reason for this is that the dual of the 
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Fig. 1. Relation between the number of bonds burned out in our model 1 - r  versus the 
proportion of bonds p present in the equivalent percolation problem. The difference between r 
and p is to be attributed to the bonds that were not burned out in the breakdown model 
because they were not carrying any current (they were not part of the backbone). 

backbone  is now the set of bonds  that are not  short-circuited by a super- 
conduct ing cluster. We note  that this is the basis of  a very efficient m e t h o d  
to generate percolat ion backbones .  ~176 

Figure 1 represents the relation between r and p obtained through the 
numerical  technique ment ioned  above.  T w o  domains  of  this curve are of  
particular interest: p close to 1, and p close to the percolat ion threshold. 

We generated respectively 600, 100, and 20 lattices of size 20, 30, and 
40 and recorded the mean  value of r(p)  averaged over all samples  that were 
still not  broken.  (This is why the curve goes  d o w n  to values of  p below the 
percolat ion threshold Pc = 0.5 in our case.)  The intersection of the curve 
r(p) with the value p = Pc gives a first est imate  of  the proport ion of intact 
bonds  at rupture: rb = 0.56 _+ 0.01. We also obtained a direct est imate of 
this value by averaging the value of  rb for each lattice. This gave r b = 
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Fig. 2. The original lattice is made up of fuses with randomly distributed thresholds and 
uniform conductance. The dual lattice consists of bonds that become superconductors when 
the voltage to which they have been submitted is larger than the threshold. We begin with a 
full lattice and progressively increase the voltage until one bond burns out and we repeat the 
process until the whole lattice breaks apart. This process, in the limit of infinite disorder of 
bond strengths, turns into a disguised percolation process where bonds are removed at ran- 
dom whenever they belong to the current-carrying part of the lattice (the backbone). In the 
original lattice shown on the left, the bond A-B cannot be removed because no current flows 
through it; in the dual lattice, represented on the right, the conjugated bond is A'-B', which is 
short-circuited by a cluster of superconducting bonds. 

0.564 ___ 0.001. We obtained the same estimate for all three sizes from 20 to 
40. It is remarkable how close r is to p for a very wide range of values; even 
close to the breaking point, r b is rather close to Pc (only 10 % difference), 
indicating that the influence of dead ends or finite clusters should be taken 
into account only in the immediate neighborhood of the threshold. 

At the beginning of the rupture process--p  close to 1--a lmost  no bond 
is isolated and therefore r is equal to p. Moreover,  we know that, in the 
domain of a large defect dilution (small damage), self-consistent techniques 
give very accurate results on the transport  properties of these systems as a 
function of p. For  instance, on a square lattice, we can write the c o n d u c -  

t i v i t y  G(p) as 

G(p) = G0(2p - 1 (2) 

where Go is the conductivity of the undamaged lattice.(l~) This expression is 
valid up to the fourth order in ( 1 -  p). 

If we call f ( x )  the distribution of probability of the breaking voltages 
vb, defined in the interval [0, 1], then, for a given value of p, the mean 
value of v b for the bond that breaks is Vb = y(p)  such that 

foY(P) f ( x )  dx = 1 -- p (3) 

and thus the voltage threshold for the entire lattice Vb(p), as can be seen 
from Eq. (1), varies as 

Vb(p) = y(p)/( ,v(p) ) (4) 
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where ( v )  is the mean voltage drop in a bond for a unit external voltage 
drop. Our hypothesis of infinite disorder will be valid until the end of the 
breaking process only in the case where the distribution of 1/V b is much 
wider than the distribution of currents in the lattice. We know, however, 
that the distribution of current will become infinitely large at the per- 
colation threshold. Thus we will observe a crossover to another regime, 
controlled rather by the geometry than by the distribution of threshold 
voltages, whenever the width of the two distributions match. 

However, if the function f has a singularity at 0, f ( x )  oc x ~ and if 
tends to - 1 ,  the rupture will always be controlled by the distribution of 
threshold voltages (a similar result has been suggested through numerical 
simulation in "model III" (our model 3) of ref. 6). It is the situation of 
infinite disorder. For narrower distributions, the hypothesis of infinite dis- 
order will be valid at the beginning of the process and one will then cross 
over to another regime during the breaking process as the distribution of 
voltage drops broadens. 

As we consider the case of "infinite disorder," we can neglect in Eq. (4) 
the variation of ( v )  with p and thus identify the variation of the external 
breaking voltage with the one o f y  given in Eq. (3). Since we also know the 
conductivity, Eq. (1), we can write down the current flowing through the 
lattice at rupture: 

Ib(p) = a ( p )  Vb(p)--- ( G o / ( V ) ) ( Z p -  1) y ( p )  (5) 

At the beginning of the rupture process, where the relation (2) holds, 
we expect r to be close to p. Figure 1 shows indeed that r and p are 
indistinguishable for p greater than 70 %. So, we can change p into r in the 
previous equations without losing much precision. 

We also get some other information about the relation between r and 
p close to the percolation point p = Pe if we note that the derivative dr/dp is 
nothing but the probability that a bond belongs to the backbone Pbb(P) for 
a given value of the control parameter p. From percolation theory, we 
know that the behavior of Pbb(P) is singular at the threshold: 

Pbb(P) cC (p -- pc) ~bb (6) 

where ]~bb is simply related to the fractal dimension of the backbone dbu 
by(12) 

~bb = v(d-- dbb) (7) 

where v is the correlation length critical exponent and d the space dimen- 
sion. For instance, in two dimensions, v=4/3 ,  dbb,'~ 1.62, /~bb~0.51; in 
three dimensions, v ~ 0.89, dbb ~ 1.77, /~bb ~ 1"1'(91 Therefore, 

dr/alp cc (p - pc)/~bb (8) 
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Hence 

( p  - p,.) oc (r - rb) 1/(1 + /~ub) (9) 

where rb is the proportion of present bonds at the final rupture of the lat- 
tice. This equation stresses the connection between the rupture problem 
and the results of the theory of percolation. However, it had not been 
possible to verify numerically this relation in Fig. 1. It should hold only in 
the close vicinity of the threshold and apparently, for the lattice sizes 
considered here, this behavior is masked by finite-size corrections. 

As an example, we know that the conductance G of the percolation 
lattice at the percolation threshold varies critically with an index t: 

G o c ( p -  pc) '  (10) 

where t ~ 1.29 in two dimensions and t ~ 2.0 in three dimensions. Thus, 

G oc (r - rb) tj(1 + ~b~/ ( 11 ) 

Some other properties of percolation can also be used directly: The 
distribution of cluster sizes in the dual lattice in two dimensions, i.e., the 
number of sites that are connected in the dual lattice by superconducting 
bonds, at the rupture point is identical to the distribution observed in per- 
colation at threshold, since, in our model of rupture, one does not remove 
bonds that are already short-circuited by a superconducting cluster; 
therefore the connectivity of the sites in these clusters is not affected. If one 
defines the clusters as the number of bonds  (and not sites) that are connec- 
ted by a superconducting path, then there is apparently a large difference 
between percolation and the rupture case. However, if we note that the 
clusters in the rupture problem are loop-free (in the dual lattice) (see 
Fig. 2), then we can relate the number of bonds b in the clusters to the 
number of sites s by b = s - 1. Therefore, both the site and bond numbering 
will produce a distribution of cluster sizes identical to the one encountered 
in percolation. For  similar reasons, the fractal dimension of the main crack 
will be that of the infinite cluster in percolation. 

In conclusion, we have shown that the final rupture of infinitely 
disordered media is related to a percolation phenomenon, and thus 
constitutes a critical point. In a real material, disorder will be "finite" and 
therefore there will be a crossover between the d i sorder -con t ro l l ed  regime 
and the bri t t le  regime (development of a macrocrack). This crossover will 
happen at a finite correlation length, given by the corresponding per- 
colation problem. In this sense, the rupture process can be seen as a critical 
phenomenon where the width of the distribution of breaking thresholds 
acts as a control parameter. 
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O u r  results  are cer ta in ly  easy to check exper imenta l ly  and  it would  be 
interes t ing to do  so to know if the concept  of  infinite d i sorder  is of 
relevance to any exper imenta l  s i tua t ions  and  up to what  po in t  one can 
neglect  of the large d i s t r ibu t ion  of  currents  tha t  will appea r  jus t  before 
rupture .  
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